6,505 research outputs found

    Quantum Speed Limit for Perfect State Transfer in One Dimension

    Full text link
    The basic idea of spin chain engineering for perfect quantum state transfer (QST) is to find a set of coupling constants in the Hamiltonian, such that a particular state initially encoded on one site will evolve freely to the opposite site without any dynamical controls. The minimal possible evolution time represents a speed limit for QST. We prove that the optimal solution is the one simulating the precession of a spin in a static magnetic field. We also argue that, at least for solid-state systems where interactions are local, it is more realistic to characterize the computation power by the couplings than the initial energy.Comment: 5 pages, no figure; improved versio

    Approaching Capacity at High-Rates with Iterative Hard-Decision Decoding

    Full text link
    A variety of low-density parity-check (LDPC) ensembles have now been observed to approach capacity with message-passing decoding. However, all of them use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of their component codes. In this paper, we show that one can approach capacity at high rates using iterative hard-decision decoding (HDD) of generalized product codes. Specifically, a class of spatially-coupled GLDPC codes with BCH component codes is considered, and it is observed that, in the high-rate regime, they can approach capacity under the proposed iterative HDD. These codes can be seen as generalized product codes and are closely related to braided block codes. An iterative HDD algorithm is proposed that enables one to analyze the performance of these codes via density evolution (DE).Comment: 22 pages, this version accepted to the IEEE Transactions on Information Theor

    Role of interference in quantum state transfer through spin chains

    Full text link
    We examine the role that interference plays in quantum state transfer through several types of finite spin chains, including chains with isotropic Heisenberg interaction between nearest neighbors, chains with reduced coupling constants to the spins at the end of the chain, and chains with anisotropic coupling constants. We evaluate quantitatively both the interference corresponding to the propagation of the entire chain, and the interference in the effective propagation of the first and last spins only, treating the rest of the chain as black box. We show that perfect quantum state transfer is possible without quantum interference, and provide evidence that the spin chains examined realize interference-free quantum state transfer to a good approximation.Comment: 10 figure

    Spin Star as Switch for Quantum Networks

    Full text link
    Quantum state transfer is an important task in quantum information processing. It is known that one can engineer the couplings of a one-dimensional spin chain to achieve the goal of perfect state transfer. To leverage the value of these spin chains, a spin star is potentially useful for connecting different parts of a quantum network. In this work, we extend the spin-chain engineering problem to the problems with a topology of a star network. We show that a permanently coupled spin star can function as a network switch for transferring quantum states selectively from one node to another by varying the local potentials only. Together with one-dimensional chains, this result allows applications of quantum state transfer be applied to more general quantum networks.Comment: 10 pages, 2 figur
    • …
    corecore